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A digital computer is used to extend the low-Reynolds-number perturbation series 
for viscous, incompressible flow between two infinite, concentric, rotating disks. Ten 
terms are found for the case of contrarotating disks and eight for the case of one disk 
fixed. Convergence is found to be limited by a square root branch point at R2 = 
- 1747.24 and -215.63 for the contrarotating case and the one disk fixed case, respec- 
tively. Analytic continuation is used to extend the series for velocity profile and torque 
to high Reynolds numbers. Comparisons with published numerical solutions show 
excellent agreement. The link between the low-Reynolds-number perturbation solution 
and the solution at high-Reynolds-number is discussed. 

I. INTRODUCTION 

The problem of two rotating coaxial disks of infinite extent in a steady, viscous, 
incompressible fluid was first treated by Batchelor [l] who recognized that von 
Karman’s similarity solution for a single rotating infinite disk [2] is still valid 
except that the Reynolds number enters as a parameter. Stewartson [3] was the 
first to solve the problem using a low-Reynolds-number expansion, although 
only the first term was published. He further presented qualitative graphs, based 
on the low-Reynolds-number solution, illustrating the development of boundary 
layers near the disks as the Reynolds number increases and gave estimates for the 
radii of convergence of the low-Reynolds-number series for two specific cases 
(contrarotating disks and one disk fixed). A clear quantitative picture of the 
evolution of the flow with increasing Reynolds number was given by the accurate 
numerical calculations of Lance and Rogers [4] and Benton [5]. A different 
approach was taken by Pearson [6] who calculated numerically the steady-state 
solution as the limit of the transient problem. For the contrarotating case he found 
that the solution becomes unstable as the Reynolds number increases. Mellor 
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et al. [7], in a very careful numerical investigation of the steady problem for the 
case in which one disk is fixed, discovered that the solution is not unique at 
infinite Reynolds number. They found that many solutions are possible 
corresponding to flows with an increasing number of cells. To further complicate 
matters, the one-cell family of solutions was found to have two branches. Tam [8], 
in his analytical treatment of the contrarotating case, discovered that eigensolutions 
exist for the high-Reynolds-number inviscid limit (core flow). The method of 
matched asymptotic expansions was used to construct a nonsymmetric flow 
similar to the one obtained numerically by Pearson at a Reynolds number of 1000. 

This paper is concerned with the extension of Stewartson’s low-Reynolds-number 
perturbation series by computer and is extracted from the thesis of Hoffman [9]. 
The present problem has the property that the nonlinear terms in the equations 
of motion are multiplied by a parameter, the Reynolds number. Thus a low- 
Reynolds-number perturbation solution produces an infinite sequence of linear 
problems each having a solution of a particularly simple form, a polynomial in 
the independent variable. This type of series is ideal for extension by computer. 
Moreover, the present series, which is expected to be limited in convergence by a 
nonphysical singularity, may be extended to high Reynolds number by analytic 
continuation. Then an answer to the question of how the low-Reynolds-number 
perturbation solution is linked to the solution at high Reynolds numbers can be 
sought. 

The aims of the present work are threefold: first, to calculate enough terms 
of the low-Reynolds-number perturbation series by computer so that the nature 
and location of the nearest singularity (which limits convergence) can be determined 
accurately; second, to show that analytic continuation can be used effectively 
to extend the perturbation series to high Reynolds number; and third, to answer 
the question of how the low-Reynolds-number series is linked to the solution 
at high Reynolds number. 

II. SOLUTION BY COMPUTER 

The problem considered herein is the steady flow of an incompressible viscous 
fluid between two parallel, infinite, coaxial, rotating disks. The configuration is 
shown in Fig. 1. The equations of motion are the steady Navier-Stokes equations. 
In nonrotating cylindrical coordinates with axial symmetry these are 

(4, + rw, = 0, (14 
R(w + wu, - u”/r> = -pr + u,, + Wr>, + u,, , (lb) 
R(w + w + Wr) = or, + (u/r), + 4, , (14 

Ww, + ww,> = -Pi + w,, + w,lr + w,, , (14 

5Sd16/3-4 
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d 

FIG. 1. Geometry for viscous flow between two rotating disks. 

where (u, v, W) are velocity components in the (r, 8, z) directions, p is pressure, 
R is Reynolds number, and the subscripts denote partial differentiation with 
respect to the particular variable. Dimensionless variables are used where lengths 
are referred to d (the distance between disks) speeds to wd (where w is the rotational 
speed of the lower disk) and pressure to pw. The rotational Reynolds number, 
or Taylor number, R is 

R = pwd2/p, (2) 

where p is the viscosity and p the density. The no-slip boundary conditions are 

u=w=o, v=r at z = 0, (34 

u=w=o, v=sr at z=l, (3b) 

where s is the ratio of disk angular velocities. 
The velocity components in the self-similar form of von Karman [2] can be 

expressed as 

u = - &Rrh’(z), v = rg(z>, w = Rh(z). (4) 

These already satisfy the continuity Eq. (la). Substitution into the momentum 
Eqs. (lb-d) shows that the pressure has the form (cf. [lo, p. 1571) 

p = R(+hr2 + h’ - iR2h2) + const, (5) 

where h = h(R). After elimination of h by differentiation, the functions g and h 
satisfy 

g” = R2(hg’ - h’g), (64 

h”” = 4gg’ + Rzhh”, (6b) 
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with boundary conditions 

g(O) = 1, 

g(l) = $3 

h(0) = h’(0) = 0, 

h(l) = h’(1) = 0. 

(74 

C’b) 

The normalization was chosen so that the problem is in a form appropriate 
for a small-Reynolds-number perturbation solution. The appearance of R2 in 
Eq. (6) suggests that the perturbation series for g and h progress in powers of R2 
as follows: 

&; R) = f R2’%n+dz), 
n=0 

(84 

h(z; R) = f R2nh,tl(z). 
7Z=O 

@W 

The sequence of equations for gi and hi are obtained by substituting the above 
series into Eqs. (6a) and (6b), then equating coefficients of like powers of R2: 

g; = 0, 

&,l = k$ (h,g&+,-, - hk’gz+l-k)> n = 1, L.., 

(94 

(9b) 

and 

v = 4g1g1’, (9c) 
n+1 

h XII 
n+l = 4 c gk&+,-k + Ii h,K+,-k 7 n = 1, 2,.... WI 

k=l k=l 

Similarly, the boundary conditions become 

gm = 19 &(O) = 07 n = 2, 3,..., 

h,(O) = h,‘(O) = 0, n = 1) 2, 3 )...) (104 
and 

g1m = 83 M) = 0, n = 2, 3,..., 

h,(l) = h,‘(l) = 0, n = 1, 2, 3 ,... . (lob) 

The solution for the leading terms in Eq. (8) was first given by Stewartson [3] 
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who showed that h, and g, are polynomials in z with coefficients that are poly- 
nomials in S, viz, 

g, = 1 + (3 - 112, (W 
h, = 6 - 1){[(1/6) + (l/15)@ - 01 z2 - [(l/3) + (l/lO)(s - 111 z3 

+ (l/6) z4 + (l/30)(8 - 1) z”}. (1 lb) 

In fact, all succeeding gi and hi are polynomials in z with coefficients that are 
polynomials in S. Thus the inhomogeneous terms in Eqs. (9b) and (9d) are found 
by inspection to be of the form 

g;,, = (124 
k=l 

n = 1, 2,..., 

h ,w 
n+l = i YP’zk-1, 

I 

Wb) 

where P, and Q, are integers depending on n, to be determined. Integration of 
these equations plus satisfaction of the no-slip boundary conditions gives the 
solution as 

g,+,(z) = A:“fl’z + ? AZ)z”-t2, 
k=l 

(134 

h,+,(z) = Bp+l’z2 + Bp+l’z3 + c Bp+;l’zk+3, Wb) 

where 
k=l 

P, X’“’ 
e+l’ = - z1 (k + 1;k + 2) ’ 

and 

XC’ 
4Ff1’ = (k + l)(k + 2) ’ k = 2, 3,. .., P, , 

On y(n) 

B:n+” = zl (k + l)(k : 2)(k + 3) ’ 

Bpfl' = - c" 
y'n' 

k=l W + 2;(k + 3) ’ 

Yf ’ 
B(n+l) = k(k + l)(k + 2)(k + 3) ’ k+2 k = 1, 2 ,..., Qn . 
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The task for the computer is to perform the tedious algebra required for the 
determination of the coefficients Xr) and Yin) as well as to determine the integers 
P, and Qn . In the present case, recursion relations for the coefficients Ap+l’ 
and Bp+l’ can be determined by hand without too much difficulty. These recursion 
relations must be evaluated by computer because of their complexity. Compared 
to the present method, this latter procedure naturally takes much less computer 
time to determine a given number of terms of the expansion. 

Note that the Al, and Bk in the present treatment depend implicitly on the 
parameter s. This has been done to simplify bookkeeping and to reduce computer 
storage requirements. 

In the determination of the coefficients Xp) and Yp), the computer performs the 
differentiation and algebra indicated in Eqs. (9b) and (9d) and then compares the 
result with the polynomial forms given by Eqs. (12a) and (12b) to determine 
X2) and Yp). The details of this procedure are given in Hoffman [93. 

An adaptation of the algorithm for polynomial algebra described in Hoffman [9] 
is used. This involves reducing the number of variables from two to one; otherwise 
the manipulative technique is the same. In the present problem, an efficient 
algorithm could be developed by taking advantage of the simple and ordered form 
of the polynomial involved. Double precision arithmetic is used in the coefficient 
calculations. 

III. RESULTS AND DISCUSSION 

Solutions for s = -1 (contrarotating disks) and s = 0 (one disk fixed) have 
been obtained. These cases were chosen for two reasons. First, they have an 
extensive literature which includes solutions obtained by numerical methods, 
and second, the character of the flow in the two cases is sufficiently different to 
provide a good test of the range of applicability of the perturbation solution. 

Ten terms in the series for s = -1 were computed, while only eight were 
computed for s = 0, for reasons to be given later. Computation time on an 
IBM 360/67 was 18 min for ten terms and 4.5 min for eight terms. 

Estimates for the radius of convergence and the type of singularity of the 
series for g and h can be obtained from knowledge of a limited number of terms 
by the graphical method of Domb and Sykes [II]. They appear to have been the 
first to use this graphical technique in connection with their work on ferromagnetic 
susceptibility. In this method the ratio of coefficients in a series, an/a,-, , is plotted 
versus I/n. This is suggested by the power series expansion, 

f(x) = f ad* = 1:: 2 ~~“.ln(x, * x) 
a! # 0, l,..., 
@. = 0, l,..., I VW 

n=O 2 
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where 

4&/a,-, = TV - (1 + 4w4l(~l&J. (14b) 
The intercept gives the reciprocal of the radius of convergence, while the slope 
at the intercept is related to the type of singularity that limits convergence. 

The series for g and h presumably are uniformly convergent since the flowfield 
is well behaved everywhere at low Reynolds numbers. Hence the radius of 
convergence should be independent of location in the interval 0 < z < 1. Results 
obtained independently by Van Dyke, to be described shortly, confirm that this 
is the case. In the present work, the radii of convergence for the g and h series 

TABLE I 

Coefficients Used in Domb-Sykes Plot, s = -1 

n ,‘p”l 
1 

B’“’ 
3 an/an-, 

2 -0.95238 x 1O-3 

3 0.22799 x 1O-6 

4 -0.75516 x lo-lo 

5 0.28689 x lo-l3 

6 -0.11811 x 10-l” 

7 0.51298 x 1O-zo 

8 -0.23155 x lo--= 

9 0.11685 x 1O-26 

10 -0.22115 x 1O-2B 

-0.15873 x 1O-s 

0.37998 x 10-1 

-0.12586 x lo-‘O 

0.47815 x lo-l4 

-0.19684 x 10-l’ 

0.85497 x 1O-21 

-0.38592 x 1O-24 

0.19474 x 10-Z’ 

-0.36858 x 1O-so 

-2.394 x 1O-4 

-3.312 x lo+ 

-3.799 x 10-4 

-4.116 x 1O-4 

-4.343 x 10-a 

-4.514 x 10-4 

-5.046 x 1O-4 

-1.893 x lo-$ 

TABLE II 

Coefficients Used in Domb-Sykes Plot, s = 0 

n A’“’ 
1 

B’“’ 
3 an/a+.l 

2 -0.42857 x 1O-2 -0.71429 x lO+ 

3 0.81791 x 1O-5 0.13632 x lo-‘& -1.908 x 1O-J 

4 -0.22036 x lo-’ -0.36727 x lo+ -2.694 x 1O-s 

5 0.68471 x 10-l” 0.11412 x lo-l0 -3.107 x 10-a 

6 -0.23085 x lo-l2 -0.38475 x lo-Is -3.371 x 10-a 

7 0.82121 x lo-l5 0.13687 x lo-l5 -3.557 x 10-3 

8 -0.30350 x 10-l’ -0.50583 x 10-l” -3.696 x 1O-3 
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were determined at z = 0 using the coefficients Aj”’ and BP). The coefficient A?’ is 
g,‘(O) which is related to the torque series on the lower disk, whereas the coefficient 
Br) is hy(0)/4!. These coefficients are tabulated in Table I for s = -1 and 
Table II for s = 0 beginning with n = 2 where the sign pattern of the series is 
established. Only one column, a,/a,-, , is shown for the ratio of coefficients since 
both series give the same value, to the number of decimals shown, for a given ~1. 
This implies that their radii of convergence are identical for a given s. 

Domb-Sykes plots for the ratio a,/a,-, are presented in Figs. 2 and 3 for 
s = -1 and s = 0, respectively. A regular pattern of alternating signs in these 
coefficients was established in both cases after n = 2, indicating that the singularity 
was on the negative axis of R2. This singularity, therefore, is nonphysical and 
may be removed by a Euler transformation or other suitable means. 

For n = 9 and 10 in Fig. 2, the points depart abruptly from the established 
pattern with the ninth term being about 6 % high and the tenth term completely 
off the plot, alJag = -1.893 x 10-3. This behavior is attributed to round-off 
error which was verified by repeating the calculations using single precision 
arithmetic. These results begin to deviate from the double precision values by 
IZ = 4 as shown in Fig. 2. Thus, based on experience gained with the s = -1 case, 
only eight terms were computed for s = 0. 

The radii of convergence, in terms of Reynolds number, are 41.8 and 14.7 
for s = -1 and 0, respectively. These values were calculated from the intercepts 

-0.0005 

-0.0004 

all 

%-1 
-0.0003 Ivesen, results 

o Dcable precision 
l Single precision 
A “an Dyke 

doubls precision 

FIG. 2. Domb-Sykes Plot of g’(0) or h”“(0) coefficients, s = -1. 
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=n 

'n-1 

FIG. 3. Domb-!Sykes Plot of g’(0) or h”(0) coefficients, s = 0. 

of the Domb-Sykes plots in Figs. 2 and 3, which in turn were determined by 
fitting the points n = 3-8 with a Lagrange polynomial with its slope constrained 
at the intercept. The present values for the radii of convergence are close to those 
given by Stewartson [3] who estimated the series to be convergent for R less than 
about 40 and 10 for s = -1 and 0, respectively. 

As mentioned earlier, the limiting slope of the Domb-Sykes plot indicates the 
nature of the nearest singularity. This is -(I + a) in Eq. (14b) where 01 is the 
exponent of the singularity. In both Figs. 2 and 3, cx appears to be approaching l/2. 
This value was used as the constraint in the Lagrange polynomial curve fit 
mentioned above. The asymptotic behavior of g’(0) and h”“(O), as indicated by the 
Domb-Sykes plot, for both s = --I and s = 0, is therefore, 

g’(0) or h”(0) - const(R& + R2)lie. (15) 

For the present problem, as mentioned in Section 2, recursion relations can 
be derived for the coefficients in the perturbation series Eq. (8). Subsequent 
to the present work, Van Dyke [ 121 has done this for the case s = - 1 and made 
his unpublished results available to the author. These recursion relations were 
evaluated on an IBM 360/67 computer using double precision arithmetic. Twenty 
terms were calculated in 2.5 min. Oscillations appeared in the lead coefficient of 
the g, polynomials beginning at the 15th term, indicating that round-off error 
was beginning to have an effect. The h, polynomials were not investigated. 

Van Dyke’s origin of coordinates was taken at the point of antisymmetry, 
z = l/2 in present notation. Therefore, the determination of gn’ on the lower 
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disk requires polynomial summation at that point, a procedure which introduces 
additional round-off error. These values for g,,‘(O) through n = 15 are shown 
in Fig. 2 and coincide with present results through n = 8. A noticeable oscillation 
appears at n = 13. A Domb-Sykes plot of his first 15 lead coefficients for g, 
corresponding to g’(1/2), gives the radius of convergence as 42.14. This differs 
from the present value of 41.7, obtained with eight terms, by 0.8 %. 

Velocity Profles 

Several accurate numerical solutions of the present problem have been published 
in recent years ([4-61). For comparison with present results, the most appropriate 
are those of Lance and Rogers [4] who present detailed numerical calculations 
for a fairly wide range of Reynolds numbers and for several values of s (including 
s = 0 and -1). 

Before a comparison can be made, however, the velocity components appropriate 
to high Reynolds number (for which a limit exists as R -+ co) must be expressed 
in terms of those at low Reynolds number. Then this result, expressed in terms 
of the appropriate perturbation series, is recast by appropriate means to increase 
its radius of convergence. The effect of two methods of analytic continuation, 
the Euler transformation and the use of rational fractions, will be illustrated in 
terms of the “reduced” azimuthal velocity component v/r, denoted by V. 

The perturbation series for V written in terms of a normalized expansion 
parameter E is 

where 

V(z; R) = g(z; R) = g g,(z) l ‘+-l, (16) 
?I=1 

t%(z) = R%‘kdd, 

E = (R/R,$. 

Note that fi is appropriate to both high and low Reynolds numbers without 
modification. Also, the coefficients g, are now O(1). 

The Euler transformation is defined by 

6 = C/(1 + 6). (17) 

Equation (16) is recast in terms of the new parameter 6 which removes the original 
singularity to R = co. If other singularities are present they will be mapped closer 
to the origin. This does not happen here, however. 

Reduced azimuthal velocity profiles were computed for several Reynolds 
numbers for s = -1 and 0. The first eight partial sums for 6 were calculate from 
both unrecast series, Eq. (16), and recast series. As long as R -C R,, , these results 
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0 0.2 0.4 0.6 08 7.0 

v 

FIG. 4. Comparison of azimuthal velocity profiles at various Reynolds numbers from present 
theory with numerical solutions of Lance and Rogers, s = -1. 

FIG. 5. Comparison of azimuthal velocity profiles at various Reynolds numbers from 
present theory with numerical solutions of Lance and Rogers, s = 0. 

differ little. For R > R,, , the unrecast results are meaningless, as would be 
expected, while the recast partial sums converge smoothly. A comparison between 
eight terms of the Euler transformed perturbation solution for i? and the numerical 
results of Lance and Rogers [4] is shown in Fig. 4 for s = -1 and in Fig. 5 for 
s = 0. Profiles at several Reynolds numbers appear on each plot. Since the case 
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s = -1 is antisymmetric, only half of the profile is shown. For s = -1 at R = 16 
and 81, and for s = 0 at R = 25, the agreement is excellent. Reynolds numbers 
of 256 for s = -1 and 81 for s = 0 are well beyond the radii of convergence of the 
original series. At the highest Reynolds numbers in Figs. 4 and 5, eight terms 
of the recast series are not enough to produce a result close to convergence. 
Therefore, to obtain an estimate of the converged profile the first eight partial 
sums at these Reynolds numbers were subjected to the nonlinear transformation 
of Shanks [13]. This estimate is shown by filled circles in Figs. 4 and 5. The values 
obtained from Shanks’ transformation for both s = -1 and 0 agree well with 
the result of Lance and Rogers, although for s = 0 the perturbation solution 
tends to overshoot the development of the constant-velocity core. 

The second method used to improve the convergence of the perturbation 
series for V is rational fractions (PadC approximants). The procedure is first to 
remove the square root branch point that limits convergence, and then recast 
the remainder in a rational fraction. The virtue of rational fractions as a means of 
analytic continuation is that a good estimate for the sum of a series can be obtained 
from only a few terms. The mathematical theory can be found in Baker [14]. 

The (N, M) PadC approximant of the power series forf(x) is 

A, + A,x + A,x2 + .a* + AMX~ 
1+BIx+B,x2+..+BNxN . (18) 

The expansion of this rational fraction in a power series must match the original 
power series term-by-term up through x IW+~. For present purposes, x corresponds 
to the expansion parameter E, and f(x) has a finite limit as E + co. For a finite 
limit, the condition N = M must be imposed on the PadC approximant. 

The reduced azimuthal velocity V, with square root branch point removed, 
is given by 

V/(1 + +I2 = g(z; c)/(l + +f2 = G(z; 6). (19) 

The series for G was determined from the present eight terms for g. Best results 
in recasting G were obtained from a rational fraction with numerator and 
denominator of the same degree, three. To recover 5, the rational fraction for G 
is multiplied by (1 + ~)l/~. 

Figures 6 and 7 compare the results of analytic continuation by Euler trans- 
formation and rational fractions for s = -1 and 0, respectively, at the same 
Reynolds numbers shown in Figs. 4 and 5. For the highest Reynolds numbers 
considered (R = 256 for s = --I and R = 81 for s = 0) rational fractions are 
slightly superior to the Euler transformation away from z = 0. For the lower 
Reynolds numbers in Figs. 6 and 7 the two methods give practically the same 
results. 
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0 0.2 04 0.6 0.8 1.0 

v 

FIG. 6. Comparison of rational fractions with Euler transformation on eight terms of azi- 
muthal velocity profile series at various Reynolds numbers, s = - 1. 

I --Euler transformation 

FIG. 7. Comparison of rational fractions with Euler transformation on eight terms of azi- 
muthal velocity profile series at various Reynolds numbers, s = 0. 

For the highest values of Reynolds number shown in Figs. 6 and 7, the rational 
fractions (dotted line) fail severely near z = 0. An overshoot, 6 > 1, is predicted 
in this region. The no-slip condition is satisfied at z = 0, however. The reason 
for this behavior is not known. 
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Torque on Lower Disk 

The nondimensional torque on the lower disk in the form given by Lance and 
Rogers [4] approaches a constant value as Reynolds number becomes large. 
This feature is very useful as a test of the power of analytic continuation of the 
low-Reynolds-number perturbation series. Since the disk is infinite, so is the 
total torque developed on it. A finite torque, however, may be defined by 
considering an arbitrary finite radius r, *. In the notation of Lance and Rogers 
this is 

T*=p* ‘O* 
I v,* /z*=o 277r *2 dr* = - ? ,3j2p*l/Zp*l/Zr$4 

0 ( 2 1 
T, (20) 

where an asterisk denotes a dimensional quantity. The quantity T is a nondimen- 
sional torque and corresponds to 24b plotted in Lance and Rogers’ Fig. 2. In 
present notation, T is given by 

T = -g’(o)/R’/“. (21) 

In evaluating Eq. (21) using the low-Reynolds-number perturbation series, 
an Euler transformation will be applied to extend the radius of convergence. 
This transformation must be applied to the denominator R1lZ as well. The recast 
series for T has the following form: 

T = - (R;,s)-l/4 f T(n,@-l. (22) 
?2=1 

TABLE III 

‘Torque Coefficients in Euler-Transformed Series 

y-1”’ 

n s = -1 s=o 
- 

1 2.OOOOO 1mooo 

2 1.21429 0.67414 

3 0.35952 0.21905 

4 0.16333 0.10718 

5 0.088548 0.062776 

6 0.053236 0.040825 

7 0.034273 0.028443 

8 0.023180 0.020805 
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The first eight T(") coefficients have been computed for s = -1 and 0 and are 
given in Table III. The values used for R:, in Eq. (22) are 1800.00 and 215.63 
for s = -1 and 0, respectively. The first value, 1800, has been rounded off from 
(14.7)2 and seems to make little difference in the convergence of the recast result. 

The first eight partial sums for T have been computed for s = -1 and s = 0. 
These are plotted versus R1j2 in Fig. 8 for s = -1 and Fig. 9 for s = 0. Shown 
for comparison are the numerical results of Lance and Rogers. In both cases 
the recast partial sums for T converge smoothly throughout the Reynolds number 
range considered (R < 625) and approach a constant asymptote. For s = -1 

0 5 10 15 20 25 

\x 

FIG. 8. Comparison of torque on lower disk vs Reynolds number from present theory with 
numerical solution of Lance and Rogers, s = -1. 

12 

I- j 

r-- 

1 - Present results with Euler transformation 

1.0 

I 

0 Lance & Rogers (numerical) -I 

0.8 

1 

0.6 

I 

0.4 

FIG. 9. Comparison of torque on lower disk vs Reynolds number from present theory with 
numerical solution of Lance and Rogers, s = 0. 
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the eighth partial sum agrees extremely well with Lance and Rogers’ calculations 
over the entire range of Reynolds number shown. For s = 0, however, the eighth 
partial sum approaches a higher asymptote than Lance and Rogers’ result and 
does not show their dip at higher Reynolds number. Apparently eight terms 
are not enough to reproduce accurately the value of T at the higher Reynolds 
numbers. This is not surprising since examination of the velocity profiles calculated 
by Lance and Rogers [4] and Benton [5] confirms that the s = 0 case has a 
complicated irregular behavior as R grows larger, while the s = -1 case 
remains well behaved. 

IV. PERTURBATION SOLUTION IN PERSPECTIVE 

The behavior of the flow at high Reynolds number must be understood first 
in order to answer the question posed in the introduction, “How is the low- 
Reynolds-number perturbation solution linked to the high-Reynolds-number 
solution?” This can be accomplished by a thorough examination of the considerable 
literature on the subject. Then the perturbation solution can be put in perspective, 
at least for the two cases considered here. 

The theme of all that followed concerning this problem was set by Batchelor [l]. 
By setting up the equations of motion and through physical reasoning, he arrived 
at a qualitative description of the flow fields encountered, including the two 
cases considered here. These were illustrated by sketches of the streamline patterns. 
Partly because of the unusual nature of some of Batchelor’s conclusions concerning 
the flow behavior at high Reynolds number, other investigators were led to 
examine the problem both theoretically and experimentally. Since the two cases 
(s = 0 and -1) are different in flow-field character, as well as to extent covered 
in the literature, they can best be examined separately. 

One Disk Fixed (s = 0) 

Batchelor’s view of this case at high Reynolds number was that viscous effects 
are confined to thin boundary layers near the disks, while the flow outside these 
layers is essentially inviscid and rotates with nearly constant angular speed in 
the same direction as the rotating disk. The rotational speed of the core is that 
value, lower than the rotational speed of the rotating disk, which provides a 
matching of the axial velocity of the inflow to the boundary layer on the rotating 
disk with that of the outflow from the boundary layer on the fixed disk. The 
boundary layer on the rotating disk corresponds to the one-disk solution of von 
Karman [2] generalized for a uniformly rotating flow at infinity, while the boundary 
layer on the fixed disk corresponds to the solution found by Bodewadt [15]. 
The inviscid core then rotates uniformly having streamlines which spiral from 
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the fixed to the rotating disk. Stewartson [3] offered an alternate view of the 
behavior at high Reynolds number which he based on the behavior of the 
perturbation solution at low-Reynolds-number and numerical investigations. 
His idea was that the nearly inviscid core is not rotating, and only a boundary 
layer on the rotating disk exists which corresponds to von Karman’s original 
similarity solution of 1921. The subsequent investigations of Lance and Rogers [4] 
and of Benton [5], which were numerical integrations of Batchelor’s similarity 
solution, clearly showed that as the Reynolds number becomes larger (of the 
order of IOOO), the solution obtained corresponds to Batchelor’s idea. Pearson [6] 
treated the unsteady analog of Batchelor’s similarity solution and obtained the 
steady-state case as the limit for large time. His steady-state limit for R = 1000 
again confirmed Batchelor’s idea. The two views of Batchelor and Stewartson 
were brought into proper focus by Mellor et al. [7] who made a careful numerical 
investigation of Batchelor’s similarity solution for the case at hand only. They found 
that a high Reynolds number a great number of solutions are possible, a fact not 
known before. These correspond to an increasing multiple of cells in the flow. 
For the one-cell branch they verified that Batchelor’s original idea for the behavior 
at high Reynolds number is the actual limit reached by starting at zero Reynolds 
number. They also identified a second subbranch of the one-cell flows which begins 
at infinite Reynolds number, decreases to a minimum, and increases to infinite 
Reynolds number again. The first limit at infinite Reynolds number is similar 
to Batchelor’s idea except that the inviscid core is rotating uniformly in a direction 
opposite to the rotating disk. The second limit at infinite Reynolds number is 
that conceived by Stewartson [3], namely, a nonrotating inviscid core with the 
solution of von Karman at the rotating disk. Mellor et al. also carried out a careful 
experimental investigation using a hot wire anemometer and found that only 
the first one-cell branch of solutions (Batchelor’s limit) is obtained. 

The place of the low-Reynolds-number perturbation solution for s = 0 in the 
Reynolds number spectrum is now clear. The agreement obtained in the com- 
parisons of the present solution with the numerical solutions of Lance and 
Rogers [4] shows clearly in the context of the previous discussion that the analytic 
continuation of the low-Reynolds-number perturbation solution has as its high- 
Reynolds-number limit the flow envisioned by Batchelor. This is the first subbranch 
of the one-cell solutions discussed by Mellor et al. In addition, this is the situation 
realized experimentally. Although the limit as R -+ cc described by Stewartson 
is now known to exist mathematically, it does not lie on a continuation of the 
low-Reynolds-number solution as Stewartson originally thought. 

Contrarotating Disks (s = -1) 
For this case Batchelor’s conclusion about the limit at high Reynolds number 

was startling. He predicted that, as in the previous case, the viscous effects would 
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be confined to thin boundary layers near each disk. Outside these boundary layers, 
the flow would be nearly inviscid and rotating uniformly. There would be, however, 
two distinct inviscid cores, one associated with each disk and rotating in the same 
direction as that disk. In the region of the midplane, where the flow divides, 
viscous effects would again be important. This is necessary to account for the 
adjustment of the flow between two contrarotating cores. Batchelor mentioned 
that this solution might not be realized experimentally. The qualitative experiment 
of Stewartson [3] lent support to Batchelor’s doubts. Stewartson used a simple 
apparatus which consisted of two smooth cardboard disks, 6 in. in diameter, 
mounted in lathe chucks. The motion of the fluid between the disks was indicated 
by a “light smooth propellor and a piece of cotton wool attached to a thread.” 
The disks were rotated rapidly in the same direction until solid body rotation 
in the core was achieved. Then one of the disks was suddenly reversed in direction 
and given the same speed as before. According to Batchelor’s prediction a contra- 
rotating core would be set up; instead, the core was found to come to rest almost 
immediately. Further, Stewartson was able to show theoretically that an inviscid 
core without rotation, but with a uniform radial inflow, is possible which matches 
by continuity the outflow in the disk boundary layers. 

The work of Lance and Rogers [4] gave additional support to Stewartson’s view 
of the limit at high Reynolds number. Their solutions, as mentioned for s = 0, 
were numerical integrations of Batchelor’s similarity solution. The highest Reynolds 
number at which they carried out a solution in the contrarotating case was 1023. 
At this value their solution shows the core region to be approaching a uniform 
nonrotating state with a uniform radial inflow as predicted by Stewartson. 

Pearson [6] also investigated this case in the manner described previously. 
For R = 100 his steady-state solution is definitely tending toward Stewartson’s 
limit; however, at R = 1000 he found that no stable symmetric solution exists 
(at least to one-dimensional disturbances). Instead, he found an unsymmetrical 
flow in which the main body of fluid is rotating in the same sense as one of the 
disks but at a higher angular speed. This flow can be reversed depending upon 
which disk is started first. 

Tam [8], who investigated the asymptotic behavior of the contrarotating case, 
has shown the existence of eigensolutions to the equations governing the inviscid 
limit for large Reynolds number (flow in the core). By combining the Stewartson- 
type solution with one of these eigensolutions, plus using the method of matched 
asymptotic expansions, Tam obtained an unsymmetric solution with the same 
features as Pearson’s steady-state limit at R = 1000. Tam also states that many 
other solutions may be constructed by choosing different eigenvalues. 

Since the analytic continuation of the low-Reynolds-number perturbation 
solution for s = -1 closely reproduces the numerical results of Lance and 
Rogers [4] and in the light of the foregoing discussion, there is little doubt that 
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the limit for large Reynolds number obtained by analytic continuation is the 
situation described by Stewartson. As Stewartson points out, Batchelor has not 
been proved wrong, but his limit is not realized either physically or by extending 
the solution for low Reynolds number. Perhaps, by analogy to the case where 
one disk is fixed, Batchelor’s idea is a limit of another branch of solutions which 
begins at infinite Reynolds number. In view of Pearson’s discovery at R = 1000, 
there appears to be no stable limit for this case of a continuation of the solution 
for low Reynolds number. Furthermore, the work of Tam [8] shows that through 
the existence of eigensolutions of the inviscid equations obtained as the limit for 
large Reynolds number, a core flow having multiple cells may exist for this case 
(at least mathematically) analogous to the situation found numerically by Mellor 
et al. for the case where only one disk rotates. 
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